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• We combine detailed survey data on further training and the robot ex-

posure measure from Webb (2019) to study the influence of automation

technology on workers’ training participation.

• Workers who are exposed to robots participate less often in training

than those who are not exposed to it.

• Firms’ willingness to support further training explains the lion share

of the training gap.

• Highly exposed workers do particularly not train in fields that are cor-

related with future promotion.
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Abstract

We use detailed survey data to study the influence of automation technology

on workers’ training participation. We find that workers who are exposed to

substitution by automation are 15 percentage points less likely to participate

in training than those who are not exposed to it. The gap is particularly pro-

nounced for medium skilled and male workers, and largely driven by the lack

of ICT training and training for soft-skills. We show that exposed workers

select into firms that fare less generous training policies in general and for

the individual worker. A detailed decomposition of the training gap reveals

that the firms’ financial and non-financial training support explains more

than 50 percent of the training gap. In contrast, education, job, and firm

characteristics only explain a small fraction of the gap.
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1. Introduction

A large literature documents that technological change had a substan-

tial impact on labor markets.1 Particularly, leading automation technologies

such as industrial robots have changed the wage and employment structure

(e.g., Acemoglu, 2015; Acemoglu and Restrepo, 2017a,b, 2018; Dauth et al.,

2021), and emerging technologies such as artificial intelligence (AI) might

even disrupt labor markets more substantially in the future.2 Therefore,

many scholars and practitioners emphasize the growing importance of on-

the-job training and life-long learning to prevent disruptive effects of techno-

logical change, and governments across the world invest heavily in training

policies (OECD, 2019). For example, in 2019 the German government spent

approximately 2.1 billion Euros to subsidize further training.

However, evidence on the relationship between automation and on-the-

job training is scarce. Nedelkoska and Quintini (2018) find a large negative

training gap for workers who are exposed to automation, but the results do

not provide explanations for the lower training rate of affected workers. In-

stead, Innocenti and Golin (2022) show that workers who fear automation

have a larger intention to participate in training.3 Yet, firms — not workers

1See Autor (2013); Acemoglu and Autor (2011); Autor et al. (2003); Goos and Manning

(2007); Goos et al. (2014); Michaels et al. (2014); Spitz-Oener (2006) for further evidence

on the effects of technological change on labor markets.
2For example, Agrawal et al. (2019) argue that AI has particularly improved the quality

of predictions that are involved in the decision making of many high-skilled workers.
3Similarly, Acemoglu (1997) argues that workers are more willing to invest in training if

they expect many firms to innovate, because their returns to training increase with firms’

innovation.
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— initiate and finance most on-the-job training4, and firms have different

incentives than workers. On one hand, firms might invest in training to fa-

cilitate the implementation of new technologies or retain firm-specific human

capital.5 On the other hand, firms may refrain from investing in the training

for workers whom they eventually substitute by technology. Without under-

standing whether and how technological change influences workers’ training

participation, designing efficient training policies that are tailored towards

the most affected workers is difficult.

This paper sheds light on the relation between automation technology

and training by analyzing whether and why workers whose jobs are at a

high risk of being changed or automated by industrial robots invest more

or less in training. Therefore, we combine the adult survey of the National

Educational Panel Study (NEPS) with a novel technology exposure measure

by Webb (2019).

The NEPS data contains detailed survey information about workers’ de-

mographics, firm characteristics, labor market careers, and — most impor-

tantly — training participation. More specifically, we have information about

the training content, the training frequency and duration, and we know

4Booth and Bryan (2007) report that around 90 percent of all work-related training is

firm-financed in Britain. Our data suggest a similar incidence of around 85 percent for

Germany.
5A number of studies indeed show that technology implementation correlates with

training investments on the firm level (e.g., Sieben et al., 2009; Bresnahan et al., 2002).

Dixon et al. (2021) show that firms adopting robots train assembly workers to take over

tasks from their former, laid-off managers. Others show that technology implementation

leads to more job rotation (e.g., Caroli and Van Reenen, 2001).
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whether and how firms support their workers’ training. The technology

exposure index of Webb (2019) allows us to identify the tasks compatible

with the capabilities of current robot technology. It relies on the overlap be-

tween job task descriptions and patent applications to construct a measure

of technology exposure on the occupational level.

We find a large negative training gap for workers who are strongly exposed

to robot technology. Even if we account for a huge set of observable charac-

teristics (i.e., worker, job, and firm characteristics) and unobserved worker

heterogeneity, the training gap still amounts to 4.2 percentage points. This

gap is almost as large as the conditional on-the-job-training gap between

college- and non-college educated workers (Görlitz and Tamm, 2016b).

The training gap is particularly pronounced among males and medium

skilled workers with an apprenticeship degree, and we find the strongest dif-

ferences for training courses in information and communication technologies

(ICT) and soft and business skills. Thus, workers who are exposed to robot

technology lack training for skills that showed large and growing wage returns

throughout the last decade and might be particularly useful for workers who

have to change occupations or firms (e.g., Falck et al., 2021; Deming, 2017;

Deming and Kahn, 2018).

Second, we exploit the detailed information of our data source to identify

the most important factors that account for the training gap of workers who

are exposed to robot technology. A detailed decomposition of the training

gap reveals that education and other worker and job characteristics only

account for less than 20 percent of the overall training gap. Common firm

characteristics (e.g., firm size and industry) even only account for less than
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5 percent of it. In contrast, the firms’ training policy accounts for the lion

share of 50 percent of the overall training gap. In more detail, we find that

the firms’ individual training support accounts for approximately 35 percent

of the overall training gap, and the firms’ general training support for another

15 percent of the training gap.

As Webb’s measure is on the occupational level, our individual fixed ef-

fects models identify the training effect from variation of occupational switch-

ers. More detailed analyses show that the effect is driven by workers who

switch from high to lower robot exposure occupations and experience a quick

and long-lasting surge in training participation. Workers who switch from

high to low exposure experience a long lasting surge in training participation

while workers who switch from low to high exposure experience a decline

in their training participation, although their decline is smaller and not as

long lasting. Nevertheless, these results contradict that the training gap

is explained by self-selection of low-skilled workers in jobs with high robot

exposure.

Overall, our results show that workers who are exposed to automation

technology train significantly less than other workers do, and the lack of

training support of their firms is the most important determinant for their

low training participation — even within firms. These results suggest that

firms have low incentives to support the training participation of workers

who are working with or are likely to be replaced by modern technologies. In

either case, the firm’s expected returns to further training for workers who are

exposed to automation technology are lower than the expected costs. At the

same time, workers who are exposed to automation technology appear not to
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compensate the lack of their firms’ training support by own investments in

further training. Cavounidis and Lang (2020) formally show that this under-

investment might be the result of a mix of a worker’s credit constraints and

low returns for new skills at the current job.

Our results contribute to at least two strands of the literature. First, we

contribute to the literature on technological change. While previous studies

have analyzed the wage and employment effects of technological change in

general (Acemoglu and Restrepo, 2018) and robot technology in particular

(e.g Acemoglu and Restrepo, 2017a; Dixon et al., 2021; Dauth et al., 2021),

our study shows that automation has not only induced a polarization of the

wage and employment structure, but is also related to a polarization of work-

ers’ training participation. Thus, our results provide evidence for a channel

through which technological change translates into a polarization of wages

and employment. Moreover, if workers who are most likely to be exposed to

the negative consequences of technological change invest less in training and

retraining than other workers, the polarization of workers’ training partici-

pation may reinforce the polarization of the wage and employment structure

in the long run.6

Second, we contribute to the literature on the determinants of further

training. Previous studies have largely focused on the training gap between

6This claim holds for positive wage and employment returns to training. While there

are several papers that find positive effects of training on wages, e.g. Görlitz and Tamm

(2016a) and Schwerdt et al. (2012) find no effects on wages or employment for German

voucher programs. Schmidpeter and Winter-Ebmer (2021) find that training improves the

re-employment probabilities once workers have become unemployed.
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low and highly educated workers (see e.g. Fouarge et al., 2013; Hidalgo et al.,

2014; Kramer and Tamm, 2018). Instead, we show a large heterogeneity in

the training participation of workers who have the same level of education

but sorted into occupations that differ in their risk of automation. The

automation training gap is almost as large as the gap between low and high

skilled workers (Görlitz and Tamm, 2016b), and the results suggest that

firms’ financial and non-financial training support is the most important

determinant for the gap.

As a result, we contribute to the literature on work-related further train-

ing by showing that firms act as gatekeeper if they expect potential returns

to further training to be low. As most work-related training is firm-financed

(Booth and Bryan, 2007), and previous results suggest that workers want

to train when they fear automation (Innocenti and Golin, 2022), our results

imply that firms prevent some workers from training by not supporting their

training financially or non-financially. Our results corroborate the findings

from, e.g., Görlitz and Tamm (2017) or van den Berg et al. (2020) that

employees are not the primary decision maker.7

The remainder of this study is structured as follows. Section 2 describes

our data and variables, and provides first descriptive evidence. Section 3

presents the methods, while Section 4 presents our results. Section 5 con-

cludes.

7Both Görlitz and Tamm (2017) and van den Berg et al. (2020) provide information

to employees about different training programs. Both programs increase the awareness of

the programs, but not the take-up rate. However, van den Berg et al. (2020) find small

increases in the take-up rate of not-subsidized training.
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2. Data and variables

This section describes our data and variables. The first subsection de-

scribes the adult starting cohort of the National Educational Panel Study

(NEPS) containing training measures and variables on individual worker

characteristics and firms. The second subsection describes the technology

exposure data by Webb (2019) that we use to measure the workers’ exposure

to automation by robots.

2.1. The National Educational Panel Study (NEPS)

The adult starting cohort of the NEPS is a longitudinal study that surveys

educational and labor market trajectories of about 10, 000 adults between

2009 and 2017. We restrict our data to working individuals who do not

undergo a vocational training at the time of the interview and are between

25 and 60 years old. Finally, we delete all observations with missing values

in our main variables of interest. Theses restrictions leave us with 43, 779

observations of 9, 594 individuals.

Our dependent variables measure the workers’ participation in non-formal

training courses that are labor-related and occur throughout the workers’

employment spells.8 In more detail, our main dependent variable is a dummy

variable indicating whether a worker participated in at least one training

course throughout the last 12 months before the interview. In addition,

we analyse the frequency and duration of training to uncover effects at the

8We exclude training that is not employment-related, informal training that is not

organized in courses or seminars, formal training such as apprenticeship training, and

training courses that occur during periods of non-employment.
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intensive margin. Finally we analyze the effects for different fields of training

(e.g., ICT or soft skills training), and we provide evidence for the workers’

formal training participation.

In addition to our training measures the NEPS contains a wide variety of

individual and firm characteristics that have a strong influence on the train-

ing participation of workers according to many previous studies (e.g., Nelen

and de Grip, 2009; Kramer and Tamm, 2018; Tamm, 2018). First, we have

detailed information about the workers’ gender, migration background, edu-

cation, part-time employment, work experience, tenure, and wages. Second,

in contrast to virtually all other large panel data sources, we have detailed

information about their firms financial and non-financial training support.

In more detail, we know whether the workers’ firms have an official training

agreement, an official unit responsible for on-the-job training, and we know

whether a firm has offered the individual worker financial or non-financial

training support (see Appendix C for the detailed survey questions. More

detailed descriptions of the variables and descriptive statistics of all variables

appear in A.9.

2.2. Exposure to robot automation

The main goal of our study is to analyze the influence of robot exposure

on workers’ training participation. To measure robot exposure, we use a new

index by Webb (2019) quantifying the share of tasks for each occupation

that might be performed by robots. To create this measure, Webb (2019)

combined information from patent texts with job descriptions from O*Net.

He used both data sources to find verb-noun pairs indicating an overlap

between occupational tasks and the capabilities of new robot technologies
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according to patent texts. Thus, the measure considers occupations with a

larger fraction of overlapping tasks as more exposed to robot technology than

those with a lower fraction.

Many recent papers have used and validated Webb’s measure for technol-

ogy exposure (e.g., Acemoglu et al., 2020). For example, Webb (2019) himself

finds displacement effects of robot exposure on wages and employment that

are similar to those found in studies using data from the International Fed-

eration of Robotics (IFR) (e.g., Acemoglu and Restrepo, 2018). Acemoglu

et al. (2020) validated Webb’s measure by comparing it with a variety of

other technology exposure measures.

As Webb created the robot exposure measure for U.S. occupations, we had

to use a crosswalk between the Standard Occupational Classification (SOC)

from the U.S. and the German classification of occupations from 2010 (see

Appendix B). One concern might be that the tasks of German occupations

differ from the tasks of U.S. occupations. Therefore, Appendix D replicates

our analysis with an index from Dengler et al. (2014). This index measures to

which extend automation technology can replace occupational tasks. Dengler

et al. (2014) designed the measure explicitly for the German occupational

structure using the German task data base BERUFENET. Although the

BERUFENET measure does not exclusively focus on robots, it is reassuring

that both measures significantly correlate (0.34).9

Webb’s measure assigns each occupation to its exposure percentile. For

9The measure by Dengler et al. (2014) does not directly relate to industrial robots, and

tasks are classified based on the judgment by a small set of experts. Thus, we decided to

remain with Webb’s measure for our main analysis.
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example, a value of 50 indicates that the occupation is the median occupation

of being likely to be automated by robots. A value of 100 or 0 indicates that

the occupation is among the most likely or the least likely occupation to

be automated by robots. Table 1 shows the sample composition along the

distribution of robot exposure in our sample. In more detail, we compare

the shares of gender, education, and age groups within quartiles for the first

NEPS wave in 2009.

Table 1: Sample statistics along the robot exposure distribution

< p25 [p25; p50) [p50; p75) ≥ p75

Gender

Men .455 .449 .401 .653

Women .545 .551 .599 .347

Education

No Vocational Degree .028 .065 .073 .146

Apprenticeship Degree .364 .604 .789 .788

University Degree .608 .331 .138 .066

Age

Born 1980 and above .162 .171 .156 .152

Born 1970 - 1979 .203 .174 .187 .189

Born 1960 - 1969 .254 .266 .287 .261

Born 1950 - 1959 .381 .389 .371 .398

Observations 745 753 820 815

This Table shows the sample composition for gender, education, and age for

different quartiles of the distribution of Webb(2019)’s robot exposure measure

for the first wave. Source: NEPS-SC6 12.1.0, own calculation.

Table 1 shows that women are working in fewer robot exposed jobs than
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men do. For example, 54.5 percent of all workers in occupations that are

below 25th percentile in the Webb measure are women, but only 34.7% in

occupations that are above the 75th percentile. A great share of workers

that are highly exposed to robots are men. This holds true for workers

without a vocational degree or an apprenticeship degree. While workers

without vocational degree are disproportionately often working in jobs with

very high robot exposure (≥ p75), there are only very few workers with

university degree. Surprisingly, we do not find any ageing effect on whether

or not a worker is highly exposed to robots. Table A.8 replicates Table 1

using the latest wave (12) instead of the first to show that the composition

of the workforce in our sample has not changed throughout the observation

period. The results are indeed qualitatively the same.

Figure 1 shows the distribution of robot exposure across industries rela-

tive to the size of the industries in our data. The y-axis shows the number

of observations in each industry, and the x-axis the average robot exposure

scores within each industry. The figure reveals that the average robot ex-

posure is relatively high in the manufacturing sector—the largest sector in

our data. In contrast, the sectors of education, public administration, and

financial services have on average lower robot exposure scores. The wholesale

and retail sector lie in the middle of the exposure distribution, and a num-

ber of small industries have on average even larger exposure scores than the

manufacturing sector. For example, the relatively small sector of professional

cleaning services has an average exposure score of 65, because the innovation

of robot technology for cleaning has accelerated throughout recent years, i.e.,

the robot technology cleaning surfaces of large buildings (Zhang et al., 2007).
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Figure 1: Distribution of robot exposure across industries

The Figure shows the distribution of robot exposure across industries. Bubbles indicate the

number of workers where a larger bubble means more workers. The five largest industries’

names are shown in the figure. Source: NEPS-SC6 12.1.0, own calculation.

3. Methods

A large number of observable and unobservable characteristics are likely

to influence both the workers’ training participation and their exposure to

robot technology. Unfortunately, robot exposure is a function of occupational

tasks, and workers do not tend to choose their jobs randomly. As a result,

finding quasi-experimental variation to identify the causal effect of robot

exposure on workers training participation is very difficult, if not impossible.
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Therefore, we have to rely on panel data estimators and control variables to

capture as many observable and unobservable confounding factors as possible.

To do so, we regress the workers’ training participation on Webb’s robot

exposure according to the following equation:

Tit = δRobotit + Jobitβ1 + Firmitβ2 + Individualiβ3 + µi + λt + ϵit (1)

The dependent variable Tit measures, first, whether workers undertook at

least one training course throughout the last 12 months. Second, Tit measures

training intensity, e.g., hours in training or number of training. Third, Tit

measures special types of training, e.g., IT training or soft/business skill

training. Fourth, in one specification Tit measures formal further training—

that is, trainees receive a diploma afterwards—instead of non-formal further

training. The main explanatory variable Robotit is Webb’s robot exposure

score, and δ is our main coefficient of interest.

In this paper, we use both a continuous and a dichotomous version of the

robot exposure measure. Webb (2019) uses the continuous measure through-

out his analyses, where each occupation’s score equals its percentile in the

distribution of robot exposure. The dummy version of the variable equals to

1 if an occupation is above the 70th percentile, and 0 otherwise.

Variables Jobit and Firmit comprise several job and firm characteristics

that are not directly related to a firm’s training policy. Jobit displays a

set of time-varying job characteristics including dummy variables for part-

time and public employment, a quadratic function for experience, and a

categorical variable for working hours. Firmit contains industry fixed effects

on the one-digit level and a categorical variable for firm size. Individuali

contains time-constant individual characteristics such as education, gender,
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migration background and year of birth. We leave Indiviuali out if we use

individual worker fixed effects. µi displays individual worker fixed effect to

capture time-constant unobserved heterogeneity on the worker level , λt are

time fixed effects, and ϵit is the error term. Standard errors are clustered at

the individual level.

4. Results

This section presents the results of our paper in five subsections. The first

subsection shows our main results. The second subsection presents heteroge-

neous effects for different groups of workers. The third subsection analyzes

the effects for different training contents, the fourth one for formal training.

The fifth subsection shows results from a decomposition analysis.

4.1. Main results

For our sample, Figure 2 shows the relationship between workers’ training

participation on the y-axis and the percentiles of robot exposure on the x-

axis.
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Figure 2: Relationship between robot exposure and training.

The Figure shows the training participation rate along the robot exposure distribution.

The horizontal line indicates the sample average training participation across all waves.

Source: NEPS-SC6 12.1.0, own calculation.

The figure reveals that specifically workers who are highly exposed to

substitution by robot technology train on average substantially less than

those who are less exposed to it. More specifically, workers below the 70th

percentile of robot exposure have an average rate of training participation

that is close to the mean training participation rate of approximately 30

percent or substantially above (e.g., approximately 40 percent). In contrast,

workers in the highest percentiles of robot exposure (i.e., above the 70th
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percentile) have substantially lower participation rates of less than 25 percent

on average.

To be able to quantify the visual correlation from Figure 2, Table 2 shows

a set of results from regression equation (1). Panel A of Table 2 displays the

results from a specification with the continuous measure for robot exposure,

and Panel B displays the training gap between workers in jobs with high

robot exposure (i.e., above the 70th percentile) and lower robot exposure.
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Table 2: Effect of robot exposure on training participation

Dependent variable: Training participation

I II III IV V

Panel A

Robot exposure -0.0028∗∗∗ -0.0022∗∗∗ -0.0021∗∗∗ -0.0010∗∗∗ -0.0006∗∗

(0.0001) (0.0001) (0.0001) (0.0002) (0.0003)

R2 0.033 0.039 0.041 0.015 0.019

Panel B

High robot exposure -0.1527∗∗∗ -0.1205∗∗∗ -0.1093∗∗∗ -0.0603∗∗∗ -0.0420∗∗∗

(0.0069) (0.0073) (0.0075) (0.0141) (0.0144)

R2 0.027 0.036 0.039 0.015 0.019

Education No Yes Yes No No

Individual controls No No Yes No No

Individual FE No No No Yes Yes

Job Characteristics No No No No Yes

Firm Characteristics No No No No Yes

Observations 43779 43779 43779 43779 43779

Dependent variable: training participation (yes/no). Column I shows results for an OLS version of

Equation 1 without individual fixed effects and other controls. Column II includes Education. Column

III includes Education and other Individual controls (gender, migration background, age). Columns IV

and V use individual fixed effects as specified in Equation (1). Column IV shows results without Job

and Firm Characteristics. Column V shows results with Job and Firm Characteristics. All regressions

include time fixed effects. Standard errors in parentheses are clustered on the individual level. ∗ p < 0.1;

∗∗ p < 0.05; ∗∗∗ p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.

Column I shows the raw OLS results containing only year dummies to

control for non-linear time trends. The coefficient estimate for robot expo-

sure is −0.028, and it is precisely estimated at the one percent level. Thus, a
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10 point increase in the percentile of robot exposure is associated with a re-

duced training participation of approximately three percentage points. The

training gap between those with high and low levels of robot exposure is ap-

proximately 15 percentage points. In other words, workers who are strongly

exposed to substitution by robot technology train approximately 50 percent

less than the average worker.

Column II additionally accounts for education. Previous literature shows

that low educated workers on average train less than high educated workers

(e.g. Fouarge et al., 2013; Bassanini et al., 2007). As low educated work-

ers are also more likely to work in occupations with higher robot exposure,

the negative effect of Column I might be the consequence of low educated

workers self-selecting into occupations with higher robot exposure. How-

ever, the coefficient estimate for the continuous measure in Column II is still

−0.022 and the training gap between high and low exposed workers’ remains

at 12 percentage points. These results suggest that educational differences

only account for a small share of the training gap. Similarly, accounting for

time-constant individual worker characteristics, such as gender and migration

status, does not change the results substantially.

In contrast, if we account for unobserved time-constant heterogeneity

by adding individual worker fixed-effects the effects declines by more than

half to approximately 1 percentage point for the continuous measure and 6

percentage points for the training gap between low and highly exposed work-

ers.10 Although unobserved heterogeneity reduces the effect, we still find a

10This fixed effects regression does not control for education and individual character-

istics, because these variables are time-constant.
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sizable gap. Adding job and firm characteristics further reduces the absolute

value of the coefficient estimates, but the results are precisely estimated at

conventional levels. A training gap of approximately 4 percentage points

is economically significant. First, the training gap amounts to 12 percent of

the average training participation. Second, the training gap is approximately

half as large as the unconditional training gap between high- and medium-

or medium- and low- skilled workers in Germany (Kramer and Tamm, 2018).

Our fixed-effects specifications identify the effect from variation of job

switchers, because robot exposure is measured on the occupational level.

However, workers tend to train more upon jobs changes, because they have

to acquire new skills. Thus, if the majority of workers switches from jobs

with high robot exposure to jobs with low robot exposure, we might simply

measure an artifact that arises because workers train more when they switch

jobs.

Therefore, Figure 3 analyzes the training pattern of job switchers over

time and distinguishes between occupational switchers who switch from high

to low robot exposure, and vice versa. The Figure shows the average training

participation of job switchers relative to the time of their switch (t = 0). The

time ranges from two years before the switch, to three years and more after

the switch. It is visually evident that both groups of switchers develop in a

similar way before they switch occupations, but switchers who initially work

in highly exposed occupations train on average less often than those who

initially work in low exposed occupations do.
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Figure 3: Training participation of occupational switchers

The Figure shows the training participation rate of occupational switchers before and

after they switch between t = −1 and t = 0. The dashed line indicates switchers from

high to low robot exposure. The dotted line indicates switchers from low to high robot

exposure. The horizontal line indicates the sample average training participation across

all waves. The vertical line indicates the timing of the switch. Source: NEPS-SC6 12.1.0,

own calculation.

Although the training participation of workers who switch from high to

low robot exposure surges immediately after the job change, Figure 3 clearly

shows that workers who switch from high to low exposure also train more

in the long run while those who switch from low to high exposure train less

in the long run. If we would measure an artifact stemming from higher

training rates upon job switching, both types of job switchers should train
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more immediately after the switch, and we should not observe long term

differences in the workers training participation.

Table 3 exploits our data in more detail by analyzing the intensive margin

of workers’ training participation—i.e., their hours spent in training courses

and the number of courses per year. Column I shows the effect for working

hours on a sample that includes all workers, i.e., also those who do not

train. Column II shows the effect on a sample that only includes workers

who train. Columns III and IV replicate this analysis for the number of

training courses. All specifications show a negative effect of robot exposure

on the training intensity. However, only column three shows an effect that

is precisely estimated at conventional levels. This result might suggests that

robot exposure has a larger effect on the workers’ decision of whether to train

or not than on their training intensity.
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Table 3: Extensive and Intensive Margin of Training Intensity

I II III IV

Ext. Hours Int. Hours Ext. Number Int. Number

High robot exposure -2.266 -2.721 -0.111∗∗∗ -0.158

(1.415) (5.840) (0.043) (0.203)

R2 0.009 0.014 0.017 0.023

Observations 43779 13344 43779 13344

Dependent variables: Hours spent in training courses, number of courses. All columns show

results for a version of Equation (1) using different dependent variables. Columns I and II show

results for the hours spent in training as dependent variable. Columns III and IV show results

for the number of courses as dependent variable. Columns I and III show results for the extensive

margin, i.e. unconditional on training participation. Columns II and IV show results for the

intensive margin, i.e. conditional on training participation. All regressions include individual

fixed effects and time fixed effects. Standard errors in parentheses are clustered on the individual

level. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.

4.2. Heterogeneous effects

Exposure to automation might have different effects for different types

of workers. For example, high skilled workers might be less exposed to the

negative consequences of automation and more capable to train and re-train

than low skilled workers. Men might be more exposed to automation then

women, because they are more likely to work in production.

To get a more nuanced view on who exactly is affected by high robot

exposure, Table 4 shows results of regression equation (1) separately for low

(no degree), medium (apprenticeship degree), and high-skilled workers (uni-

versity degree) and for men and women. The results show a small negative

effect of robot exposure on training participation for low (Column I) and
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high-skilled workers (Column III) that is not statistically significant at con-

ventional levels. In contrast, they reveal a large negative effect for medium

skilled workers with an apprenticeship degree that is precisely estimated (Col-

umn II).11 Columns IV and V reveal that the training gap is much larger for

men than for women.

Table 4: Heterogeneity Analysis

Education Gender

I II III IV V

Low Medium High Male Female

High robot exposure -0.026 -0.050∗∗∗ -0.024 -0.068∗∗∗ -0.021

(0.038) (0.016) (0.039) (0.021) (0.019)

R2 0.026 0.019 0.029 0.021 0.021

Observations 2661 28124 12994 21170 22609

Dependent variable: training participation. All columns show results for Equation 1 for

different subsamples. Columns I, II, and III show results for the groups of low (no voca-

tional degree), medium (apprenticeship degree), and highly (university degree) educated.

Columns IV and V show results for male and female workers. All regressions include indi-

vidual fixed effects and time fixed effects. Standard errors in parentheses are clustered on

the individual level. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01; Source: NEPS-SC6 12.1.0, own

calculation.

Overall, the results reveal that the negative effect of robot exposure on

11Apprenticeship graduates are skilled workers with a dual education that alternates

between firm and class room training. Apprenticeship training programs usually last three

years and are comparable to U.S. four year colleges that provide high-skilled vocational

education. Approximately 60 percent of all workers in Germany hold an apprenticeship

degree.
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training participation is strongest for medium skilled and male workers. We

can contradict concerns that the results are driven by low skilled workers

who generally train less often than other workers do. However, workers who

are highly exposed to robots learn on-the-job rather than off-the-job but face

a high risk of unemployment when robots become further independent of a

worker’s input. Training may then help to bridge transition from worker to,

e.g., manager or climb the promotion ladder to other jobs. Not participating

in further training, however, can have devastating effects on individuals’ ca-

reers. Not only are these workers less likely to climb the promotion ladder,

but also more likely to become unemployed or taking wage cuts if robots

render their skills obsolete. Therefore, the next section exploits the detailed

information about the training content to explore whether workers with high

robot exposure invest in specific types of training.

4.3. Training content

This subsection analyzes the influence of robot exposure on the training

participation in four different training categories. The first category contains

IT training courses that include training for IT, computer, and data process-

ing skills. Many view IT skills as the new literacy (e.g., Neelie Kroes, former

Vice President of the European Commission) and IT skills are related to sub-

stantial wage returns for individual workers (e.g., Falck et al., 2021). Thus,

IT skills appear to be important for career development in times of funda-

mental technological change. The second training category contains training

for production technologies and processes. These comprise innovations in

production technologies and potential adaptions rather than learning how

to collaborate with a robot. Thus, these production training courses may
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be beneficiary for supervisory employees rather than assembly line workers,

though they may be used as preparation for a later promotion.

The third category contains courses for soft skills and business administra-

tion including courses for presentation skills, courses for linguistic proficiency,

and courses in business administration. An emerging literature shows the

rising importance of soft and management skills including communication,

teamwork, presentation, customers relation and leadership skills. Through-

out the recent decades, the wage returns to soft-skills even rose more strongly

than the returns to analytical or IT skills (e.g., Deming, 2017; Deming and

Kahn, 2018). The fourth category contains all other training courses.

Table 5: Effect of robot exposure on training by content

I II III IV

IT Production Soft/Business Other

High robot exposure -0.016∗∗ -0.004 -0.031∗∗∗ -0.017

(0.007) (0.009) (0.010) (0.014)

R2 0.009 0.006 0.013 0.011

Observations 32659 32061 35109 43779

Dependent variable: training participation. All columns show results for Equation 1

for different types of training content. The indicator for training participation is 1 if the

respondent has participated in a course in the last 12 months specified as IT (Column I),

Production (Column II), Soft / Business (Column III), or others (Column IV), and 0 if

the respondent has not participated in any course in the last 12 months. All regressions

include individual fixed effects and time fixed effects. Standard errors in parentheses

are clustered on the individual level. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01; Source:

NEPS-SC6 12.1.0, own calculation.

Table 5 reveals that workers who are strongly exposed to robot technology
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are significantly less likely to invest in IT training and training for soft and

business skills than other workers. IT and soft skills are general and can

be transferred across firms, occupations, and industries. While IT training

benefits individual productivity, social skills reduce coordination costs and

benefit team productivity (Deming, 2017). Moreover, as mentioned above,

recent literature suggests that firms demand a complementary cognitive and

social skill set (Deming and Kahn, 2018). Thus, these skills are important for

the workers’ career development. However, firms should have relatively low

incentives to invest in these skills—particularly, when workers are inclined

to be replaced by technology. In contrast, individual workers should have a

high incentive to do so. However, the results of Table 5 rather suggest that

workers do not compensate the potential lack of their firms’ training support

by individually investing in further training. We investigate this relationship

in more detail below.

For training in production technologies and other training fields we find

no significant negative effects. Training in specific production technologies

includes security training for production purposes. Even if firms want to

displace a worker in the near future, work protection regulation forces firms

to train their workforce with respect to security issues of the production

process.

4.4. Formal training

If workers are likely to be replaced by robot technology in the near future,

both workers and firms might have very low incentives to invest in non-formal

on-the-job training, because workers are very likely to change their firm and

occupation. However, workers who are likely to be displaced from their
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current job, might have high incentives to invest in formal training (i.e., to

undertake a second apprenticeship training or to acquire a University degree)

so that they can switch their occupation.

Table 6: Effect of robot exposure on formal further training participation

I II III IV V

High robot exposure -0.002∗∗∗ -0.001∗ -0.001 -0.002 -0.000

(0.001) (0.001) (0.001) (0.004) (0.004)

R2 0.0011 0.0014 0.0056 0.00087 0.0027

Education No Yes Yes No No

Individual controls No No Yes No No

Individual FE No No No Yes Yes

Job Characteristics No No No No Yes

Firm Characteristics No No No No Yes

Observations 43779 43779 43779 43779 43779

Dependent variable: formal training participation. All columns show results for Equa-

tion 1 with formal further training as dependent variable. Formal training is defined as

undergoing regular vocational education (apprenticeship / university degree). The indi-

cator for formal training participation is 1 if the respondent has started formal further

training in the last 12 months, and 0 if the respondent has not started formal further

training in the last 12 months. Columns I, II and III show results for an OLS version

of Equation 1 without individual fixed effects and other controls. Column II includes

Education. Column III includes Education and other Individual controls (gender, mi-

gration background, age). Columns IV and V use individual fixed effects as specified in

Equation 1. Column IV shows results without Job and Firm Characteristics. Column

V shows results with Job and Firm Characteristics. All regressions include time fixed

effects. Standard errors in parentheses are clustered on the individual level. ∗ p < 0.1;

∗∗ p < 0.05; ∗∗∗ p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.

Therefore, Table 6 replicates the results of Table 2 for the workers’ formal

training participation, i.e., the dependent variable is a dummy variable indi-
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cating whether the worker undertook a apprenticeship or university degree.

The raw OLS results in the first column of Table 6 reveal a significant neg-

ative gap in the workers’ formal training participation of approximately 0.2

percentage points, which amounts to around 40% of the control group mean.

However the gap disappears once we control for education and individual

characteristics (Column III).Thus, the results do not suggest that workers

who are likely to be replaced by robot technology are more likely to invest

in formal training to be able to switch jobs. However, they are also not less

likely to do so.

4.5. Decomposition results

The previous sections exploited the panel nature of our data to account

for unobserved heterogeneity. However, the most important advantage of our

data is that it contains a substantial amount of information about workers’

training participation that allows us to explain the training gap by observable

characteristics that are commonly not available in other data sources.

Thus, we estimate the following Oaxaca-Blinder decomposition:

E(TLE)−E(THE) = (E(XLE)−E(XHE))
′
βLE +E(XHE)

′
(βLE − βHE) (2)

The left-hand side of equation 2 shows the difference in the expected training

participation between workers who are not highly exposed to robot technology—

i.e., low exposure (LE) below the 70th percentile—and those who are highly

exposed to them—i.e., high exposure (HE) above the 70th percentile.

The right-hand side shows two terms. The first term ((E(XLE)−E(XHE))
′
βLE) denotes the cumulative mean difference of all explanatory variables

between the two groups weighted by the slope of the low-exposed group.

29



This term is usually referred to as the explained part of the decomposition.

Thus, in our case, the first term indicates the part of the difference in the

training participation between high- and low-exposed workers that is related

to observable individual and firm characteristics in our data set.

The second term of the right-hand side (E(XHE)
′
(βLE − βHE)) denotes

the cumulative average of the explanatory variables of the reference group of

high-exposed workers weighted by the differences of the slopes between low-

and high-exposed workers. This term is usually referred to as the unexplained

part of the decomposition. In our case, this term can be interpreted as the

difference in the training participation of high and low exposed workers that

is not related to observable worker and firm characteristics. For the purpose

of the Oaxaca-Blinder decomposition, we again have to restrict our sample

to the waves 2011/12, 2018/19, and 2019/20. Standard errors are clustered

at the individual level.

Table 7 shows the results. The first row of the upper panel shows the

raw training gap between low- and highly-exposed workers. The second row

shows the explained part, and the third row shows the unexplained part.

The lower panel shows the detailed decomposition of the explained part as

a fraction of the overall gap. Therefore, we summarized the explanatory

variables in six categories. Education (1) contains two dummy variables for

medium and high education. Individual characteristics (2) contain dummies

for the workers’ gender and migration status, and a variable capturing the

workers’ birth year. Job characteristics (3) include variables for part-time

and public employment, working hours, experience and experience squared.

Firm characteristics (4) contain industry dummies and firm size. The cate-

30



gory general support (5) contains dummy variables that indicate whether the

workers’ firms have implemented human resource practices for the workers’

training support. The category individual support (6) contains dummy vari-

ables indicating whether a worker generally receives financial support for his

or her training, and whether he or she is generally allowed to reduce working

hours for training purposes. The detailed questions appear in Appendix C.
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Table 7: Oaxaca blinder decomposition

I II III IV

Overall IT Soft/business Age-Training-Gap

Raw difference -0.169∗∗∗ -0.080∗∗∗ -0.142∗∗∗ -0.072∗∗∗

Explained -0.113∗∗∗ -0.042∗∗∗ -0.092∗∗∗ 0.005

Unexplained -0.057∗∗∗ -0.038∗∗∗ -0.050∗∗∗ -0.077∗∗∗

Detailed decomposition of explained part in percent of the overall gap

Education 9%∗∗∗ 4% 11%∗∗∗ 4%

Ind. characteristics 5%∗∗∗ 8%∗∗∗ 5%∗∗ -10%∗∗∗

Job characteristics 2% 0% -1% -18%

Firm characteristics 2% 8% 9%∗∗∗ -8%∗∗∗

General support 15%∗∗∗ 10%∗∗∗ 11%∗∗∗ 4%

Individual support 35%∗∗∗ 28%∗∗∗ 32%∗∗∗ 26%∗∗∗

Observations 12224 8801 9597 12224

Dependent variable: training participation. All columns show results for Equation 2 with further

training as dependent variable. Column I shows results for overall training participation. Columns

II and III show results for IT and soft-skill training, respectively. Column IV shows results for

a decomposition using age as the discriminatory variable instead of robot exposure. The upper

panel describes the raw difference, explained, and unexplained share. The lower panel shows

the contribution to the explained share by group of variables. Education contains indicators

for medium and high education. Individual characteristics contain indicators for the workers’

gender and migration status, and a variable capturing the workers’ birth year. Job characteristics

include variables for part-time and public employment, working hours, experience and experience

squared. Firm characteristics contain industry dummies and firm size. The category general

support contains indicators whether the workers’ firms have implemented human resource practices

for the workers’ training support. The category individual support contains indicators whether

a worker generally receives financial support for his or her training, and whether he or she is

generally allowed to reduce working hours for training purposes. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗

p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.

The first column of Table 7 shows an unconditional training gap of ap-
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proximately 17 percentage points. Thus, the raw training gap in this re-

stricted sample is very similar to the raw training gap in the overall sample

(see Table 2). The second row of the first column shows that we can explain

approximately 11 percentage points (approximately 67 percent) of the entire

gap with the available worker and firm characteristics. Only, approximately

6 percentage points of the training gap remain unexplained.

The lower panel of Table 7 reveals that differences in the workers’ edu-

cation account for approximately 9 percent of the entire training gap while

individual, job, and firm characteristics together only account for less than

10 percent of it. In contrast, differences in the firms’ support for workers’

training participation account for the lion share of the training gap, i.e., the

firms’ general support for workers’ training participation accounts for 15 per-

cent and the firms’ individual support accounts for 35 percent of the overall

training gap. In other words, the training participation of workers who are

exposed to substitution by robot technology would be approximately 50 per-

cent higher if they would receive the same training support by their firms

as other workers. Additional analyses shown in Figures A.5 and A.6 present

visual evidence that the increase in training for high-to-low switchers cor-

responds to an increase in individual support of the firms as well as better

general HR policies.

Columns II and III decompose the training gap for different types of

training. Column II shows the decomposition of the training gap for IT

courses. For the gap in IT training, observable individual and job character-

istics barely explain anything of the training gap. General firm characteristics

and the general support within a firm explain 8 percent and 10 percent, re-

33



spectively. The lion share of the gap is explained by the individual support

explaining 28 percent of the training gap. Similar to the previous results

column III reveals that the firms general and individual training support ac-

counts for the largest share of the training gap for soft-skills and business

courses.

Workers who have low preferences for training might be more likely to

claim that they do not receive support, even if they do. Moreover, they might

be less informed about their firms’ training support than other workers. As

a result, firms’ training support might not only explain the automation gap,

but also any other training gap.

To analyze this argument, the last column presents a decomposition of

the training gap between young and old workers (i.e., workers who were born

between 1950 and 1959). As for workers who are exposed to automation,

firms should have relatively low incentives to train old workers who will

retire soon. Nevertheless, the average old worker should have lower individual

incentives to train than the average worker who is exposed to automation,

i.e., workers who are close to their retirement have less time to collect the

returns to their training investments. As a result, we should expect firms’

training support to matter more for the automation-training gap than for

the age-training gap. Indeed, the last column reveals that firms’ general and

individual training support accounts for less of the age training gap than of

the automation-training gap.
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5. Conclusion

Policymakers around the world are concerned about potential negative

effects of automation. This paper shows that workers who are strongly ex-

posed to robot technology train substantially less than other workers, and

neither common observable characteristics, such as education and experience,

nor time-constant heterogeneity can entirely explain the training gap. The

effect is mainly driven by medium-skilled and male workers and cannot be ex-

plained with training substitution strategies towards formal further training

(catching up on, for example, university degrees).

We show that the training gap does not persist into the intensive margin

(hours and number of training incidences)—that is, the bottleneck for work-

ers in occupations with high robot exposure is the initial training decision.

Moreover, analyzing occupational switchers reveals that workers who switch

from high to low robot exposure train significantly more often after their

switch in both the short- and longer-term than workers who switch from low

to high exposure occupations.

Our detailed survey data shows that the lower training participation rate

is concentrated among relevant skills, such as IT (Falck et al., 2021) or soft-

and business-skills (Deming, 2017; Deming and Kahn, 2018). This may be

problematic as it magnifies inequalities resulting from the worker selection

process. Workers who select into high robot exposure occupations are less

likely to receive typical promotion training. A detailed decomposition reveals

that the training gap for workers who are strongly exposed to robot technol-

ogy is largely related to their firms’ training support and to a much lesser

extend to variables that commonly drive workers’ training participation, e.g.,
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education, age, experience, gender, or migration background.

Overall, our results suggest that firms reduce their training investments

for workers whom they plan to substitute by technology, and workers appear

not to compensate the lack of their firms’ training support by individual

training investments. This lack of training investment might have negative

effects for the workers’ careers in the long run. Therefore, our results help

to understand why workers who are replaced by modern technologies experi-

ence long lasting negative consequences and do not adjust immediately (e.g.,

Cortes, 2016).
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Appendix A. Figures and Tables

Table A.8: Sample statistics along the robot exposure distribution

for the last wave

< p25 [p25; p50) [p50; p75) ≥ p75

Gender

Men .453 .455 .433 .648

Women .547 .545 .567 .352

Education

No Vocational Degree .030 .040 .050 .092

Apprenticeship Degree .340 .604 .749 .855

University Degree .630 .355 .201 .054

Age

Born 1980 and above .190 .140 .102 .094

Born 1970 - 1979 .225 .193 .208 .182

Born 1960- 1969 .390 .464 .460 .476

Born 1950 - 1959 .195 .203 .230 .248

Observations 1014 1041 943 818

This Table shows the sample composition for gender, education, and age for

different quartiles of the distribution of Webb’s (2019) robot exposure measure

for wave 12. Source: NEPS-SC6 12.1.0, own calculation.
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Table A.9: Baseline characteristics by robot exposure

Robot Exposure

High Low Difference

Training Outcomes

Training participation 0.23 0.42 0.19∗∗∗

Number of courses 0.59 1.15 0.56∗∗∗

Hours in courses 12.85 22.64 9.78∗∗∗

IT course 0.03 0.11 0.08∗∗∗

Production course 0.06 0.07 0.01

Soft & Business Skills course 0.06 0.21 0.16∗∗∗

Other course 0.66 0.55 -0.11∗∗

Individual Characteristics

Female 0.36 0.56 0.20∗∗∗

Migration Background 0.21 0.11 -0.10∗∗∗

Education = No Vocational Degree 0.15 0.06 -0.10∗∗∗

Vocational Degree 0.78 0.60 -0.18∗∗∗

University Degree 0.06 0.35 0.28∗∗∗

Year of Birth 1964.98 1965.33 0.36

Job Characteristics

Part Time Employment 0.28 0.34 0.07∗∗∗

Employed in the public sector 1.80 1.69 -0.12∗∗∗

Working Hours = <15 hours 0.10 0.07 -0.02∗

Between 15 and 30 hours 0.12 0.20 0.08∗∗∗

Between 30 and 40 hours 0.31 0.24 -0.07∗∗∗

Between 40 and 50 hours 0.43 0.42 -0.01

> 50 hours 0.05 0.07 0.02∗

Labor Market Experience(Years) 20.34 18.01 -2.34∗∗∗

Firm Characteristics

Industry = Agriculture 0.02 0.01 -0.02∗∗∗

Mining and quarrying 0.01 0.00 -0.00∗

Manufacturing 0.33 0.20 -0.13∗∗∗

Table continues on next page
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Table A.9 continued

Robot Exposure

High Low Difference

Energy supply 0.01 0.01 -0.00

Water supply 0.01 0.00 -0.01∗∗∗

Construction 0.08 0.03 -0.05∗∗∗

Retail 0.06 0.10 0.04∗∗∗

Transportation and storage 0.09 0.02 -0.07∗∗∗

Accommodation 0.03 0.02 -0.00

ICT 0.01 0.06 0.04∗∗∗

Finances and insurances 0.00 0.06 0.06∗∗∗

Real estate activities 0.00 0.01 0.01

Prof., scient. and techn. activities 0.02 0.06 0.04∗∗∗

Administrative services 0.06 0.02 -0.04∗∗∗

Public admin. and defence 0.04 0.12 0.09∗∗∗

Education 0.01 0.12 0.10∗∗∗

Human health and social work 0.18 0.12 -0.05∗∗∗

Arts, entertain. and recreation 0.01 0.01 -0.01

Other service activities 0.03 0.02 -0.00

Households as employers 0.01 0.00 -0.00

Extraterritorial organisations 0.00 0.00 0.00

Firm Size = Below 10 0.17 0.20 0.02

Between 10 and 50 0.31 0.31 -0.00

Between 50 and 200 0.25 0.22 -0.03

Between 200 and 500 0.10 0.11 0.01

More than 500 0.17 0.16 -0.00

This Table shows averages for training outcomes as well as individual,

job, and firm characteristics by Webb’s (2019) robot exposure measure.

The first column shows averages for workers working in highly exposed

occupations. The second column shows averages for workers working

in low exposed occupations. The third column shows the differences

(low vs. high) and the significance of a t-test. ∗ p < 0.1; ∗∗ p < 0.05;

∗∗∗ p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.
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Figure A.4: Correlation between robot exposure and routine tasks

The Figure shows the correlation between the share of routine tasks and Webb’s (2019)

robot exposure measure. The solid line indicates fitted values. Scatterplot is binned.

Source: NEPS-SC6 12.1.0, own calculation.
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Figure A.5: Individual training support of occupational switchers

The Figure shows the training participation rate of occupational switchers before and after

they switch between t = −1 and t = 0 for individual financial and non-financial training

support. The dashed line indicates switchers from high to low robot exposure. The dotted

line indicates switchers from low to high robot exposure. The vertical line indicates the

timing of the switch. Source: NEPS-SC6 12.1.0, own calculation.
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Figure A.6: General training policies of the firm of occupational switchers

The Figure shows the training participation rate of occupational switchers before and

after they switch between t = −1 and t = 0 for general training policies of the firm. The

dashed line indicates switchers from high to low robot exposure. The dotted line indicates

switchers from low to high robot exposure. The vertical line indicates the timing of the

switch. Source: NEPS-SC6 12.1.0, own calculation.

42



Appendix B. Webb Scores - Crosswalk

Webb (2019) delivers raw scores of the exposure level of occupations to

software, robots, and AI, alongside with the percentiles of each occupation.

To crosswalk the raw data from Webb to the German classification of occupa-

tions, we first create a crosswalk for the Standard Occupational Classification

(SOC) 2010 to the German Classification of Occupations (KldB) 2010 by us-

ing the International Standard Classification of Occupations (ISCO) 2008.

Hardy et al. (2018) provide data on the crosswalk from SOC2010 to ISCO08.

We use the official crosswalk data from the Federal Employment Agency

(BA) in Germany to crosswalk ISCO08 to KLDB2010.

We then take the raw data obtained from Webb (2019) and trim the

the 8-digit O*NET SOC-Code to 6 digits. Since several occupations have

the same 6-digit code, we take the median exposure score of the duplicates.

Afterwards, we merge the 6-digit SOC to 5-digit KLDB2010 using the cross-

walk created in the first step and aggregate the data to the KLDB2010 level

taking the median exposure score for each 5-digit KLDB2010 level.

The following occupations do not receive any exposure score: Occupations

of the armed forces, coach drivers, chimney sweepers, professions in money

and pawn lending, members of legislative bodies, professions in community

work, members of religious orders and mother houses, professions in theol-

ogy and congregational work, professions in moderation and entertainment,

comedians and cabaret artists, magicians and illusionists.
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Appendix C. Survey questions on individual and general firm sup-

port for training investments

The NEPS provides detailed information about their firms’ financial and

non-financial training support for workers. One set of questions addresses the

firms’ general support for training participation in terms of human resource

practices. The survey questions are as follows:

• Does your company have a shop agreement governing continuing edu-

cation?

• Is there continuing education planning on a regular basis for the em-

ployees there?

• Does your company finance or provide classes or training courses?

• Is there a staff member, unit or department responsible for training or

continuing education?

Another set of questions addresses the firms’ individual support for fur-

ther training. The detailed survey questions are as follows:

• Has your current employer offered to release you from work to attend

training sessions and courses?

• Has your current employer offered to pay for you to attend courses and

training sessions, give you aid or other kinds of financial support?
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Appendix D. Replication with BERUFENET
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Table D.10: Effect of task composition on training participation

Dependent variable: Training participation

I II III IV V

Panel A

Share of routine tasks -0.026∗∗∗ -0.021∗∗∗ -0.0019∗∗∗ -0.010∗∗∗ -0.0009∗∗

(0.002) (0.002) (0.002) (0.004) (0.004)

R2 0.021 0.034 0.037 0.014 0.019

Panel B

High routine intensity -0.095∗∗∗ -0.081∗∗∗ -0.060∗∗∗ -0.034 -0.036

(0.011) (0.011) (0.011) (0.026) (0.027)

R2 0.011 0.028 0.031 0.014 0.019

Education No Yes Yes No No

Individual controls No No Yes No No

Individual FE No No No Yes Yes

Job Characteristics No No No No Yes

Firm Characteristics No No No No Yes

Obs. 43779 43779 43779 43779 43779

Dependent variable: training participation (yes/no). Column I show results for an OLS version

of Equation 1 without individual fixed effects and other controls. Column II includes Education.

Column III includes Education and other Individual controls (gender, migration background, age).

Columns IV and V use individual fixed effects as specified in Equation 1. Column IV shows results

without Job and Firm Characteristics. Column V shows results with Job and Firm Characteristics.

All regressions include time fixed effects. Standard errors in parentheses are clustered on the indi-

vidual level. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.
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Table D.11: Oaxaca blinder decomposition – High routine intensity

I II III IV

Overall training IT Production Soft/business

Raw difference 0.101∗∗∗ 0.039∗∗∗ -0.034∗∗∗ 0.063∗∗∗

Explained 0.091∗∗∗ 0.016∗∗∗ -0.016∗∗∗ 0.051∗∗∗

Unexplained 0.010 0.023∗∗ -0.017 0.012

Detailed decomposition of explained part in percent of the overall gap

Education 7%∗∗∗ 8%∗∗∗ 0% 11%∗∗∗

Ind. characteristics 21%∗∗∗ 28%∗∗∗ 0% 22%∗∗∗

Job characteristics 1% -5% 12% -6%

Firm characteristics 31%∗∗∗ -23%∗ 47%∗∗∗ 25%∗∗∗

General support 6%∗∗ 3% 0% 5%

Individual support 25%∗∗∗ 21%∗∗∗ -9%∗∗ 27%∗∗∗

Observations 12223 8800 8515 9597

Dependent variable: training participation. All columns show results for Equation 2 with fur-

ther training as dependent variable. Column I shows results for overall training participation.

Columns II, III, and IV show results for IT, production, and soft-skill training, respectively. The

upper panel describes the raw difference, explained, and unexplained share. The lower panel

shows the contribution to the explained share by group of variables. Education contains indica-

tors for medium and high education. Individual characteristics contain indicators for the workers’

gender and migration status, and a variable capturing the workers’ birth year. Job characteristics

include variables for part-time and public employment, working hours, experience and experience

squared. Firm characteristics contain industry dummies and firm size. The category general sup-

port contains indicators whether the workers’ firms have implemented human resource practices

for the workers’ training support. The category individual support contains indicators whether

a worker generally receives financial support for his or her training, and whether he or she is

generally allowed to reduce working hours for training purposes. ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗

p < 0.01; Source: NEPS-SC6 12.1.0, own calculation.
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